Unit B - Practical 3

Boyle's law

Safety

There are no safety issues concerning this experiment.

Apparatus and materials

- syringe ($100 \mathrm{~cm}^{3}$)
- sealing lubricant
- pressure sensor
- rubber tube

Introduction

Boyle's law is the relationship between the pressure and the volume of a gas for a given mass of gas kept at constant temperature. It states that the volume of the gas V is inversely proportional to its pressure P and can be expressed as:

$$
P V=\text { constant or } P_{1} V_{1}=P_{2} V_{2}
$$

It is equivalent to the ideal gas law $P V=n R T$ ($n=$ number of moles of gas, $R=$ gas constant, $=$ temperature of gas) when n and T are constant.

Procedure

1 To ensure that no air will leak, cover the piston seal of the syringe with a small amount of lubricant, as well as the connections of the rubber tube with the syringe and the pressure sensor.

2 Adjust the initial volume of the syringe to $50 \mathrm{~cm}^{3}$ and wait for a few minutes for the air in the syringe to reach equilibrium. Then measure the pressure of the air using the pressure sensor.

3 Increase the volume by $10 \mathrm{~cm}^{3}$ and repeat step 2.
4 Repeat the process for five volumes in total. Record your measurements in an appropriate table.

5 Plot a graph of your data.

Questions

1 What is the shape of the line that Boyle's law would have in a graph of P vs V ?

2 How could you graph your data so as to obtain a straight line?

